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The properties of a relatively uncommon regime of fluid dynamics, low Mach number 
compressible flow are investigated. This regime, which is characterized by an 
exceptionally large channel aspect ratio L / d  - lo6 leads to highly subsonic flows in 
which friction dominates inertia. Even so, because of the large aspect ratio, finite 
pressure, temperature, and density gradients are required, implying that compressibility 
effects are also important. Analytical results are presented which show, somewhat 
unexpectedly, that for forced channel flow, steady-state solutions exist only below a 
critical value of heat input. Above this value the flow reverses against the direction of 
the applied pressure gradient causing fluid to leave both the inlet and outlet implying 
that the related concepts of a steady-state friction factor and heat transfer coefficient 
have no validity. 

1. Introduction 
This paper describes the basic properties of a relatively uncommon regime of fluid 

dynamics, low Mach number compressible flow (LMCF). Such flows have distinctly 
different behaviour than the more familiar and extensively investigated regimes of high 
Mach number compressible flow (of great interest to aerodynamicist) and low Mach 
number incompressible flow (of great interest to many mechanical engineering 
applications). 

The motivation to study the LMCF regime results from research (Shajii & Freidberg 
1994a, b) on the cooling of large-scale superconducting magnets such as might be used 
in next generation magnetic fusion experiments (Thome 1994). A typical magnet coil 
has a large diameter on the order of 15 m. Because of the need for electrical continuity 
of the superconductor each N-turn coil is fabricated from a single, uninterrupted length 
of cable L x 1 km. The cross-section of the cable is circular with a radius R, x 2 cm. 
The cable itself is composed of approximately 1000 tightly compacted, twisted 
superconducting/copper strands, each strand having a radius R, x 0.5 mm. The coil is 
cooled by supercritical helium flowing between the strands. With regard to the fluid 
dynamic behaviour of the coolant, the geometry implies that the hydraulic diameter d 
for the flow is comparable to the strand diameter: d x 1 mm. That is, the combination 
of a large wetted perimeter and a typical void fraction of x 0.4 causes d to be 
much less than R, but comparable to R,. Consequently, the aspect ratio of the flow has 
the enormous value L / d  x lo6. 

This is the crucial property of LMCF. With such a large aspect ratio, the flow is 
dominated by friction rather than inertia. The resulting flows are highly subsonic: 
M - 0.02. Even so, because of the long lengths involved, a finite pressure gradient is 
required to drive the flow. Thus, the usual equivalence of low Mach number and 
incompressible flow (White 1986) does not apply: even though M <  1, the finite 
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gradients in p ,  p, and T imply that compressibility is an important effect that must be 
included in the modelling. 

Of the many areas of fluid dynamics that have been studied, two that are related to 
LMCF are that of gaseous flow through a porous medium (Kaviany 1991), and 
creeping flow through consolidated media. Gaseous porous-medium flow is more 
closely related in that the flows are subsonic and compressibility must be included. 
However, in the analytical investigations thus far presented (mainly corresponding to 
flow in capillary tubes) the ratio L l d  while large, is not so large that finite pressure 
gradients are required (Kaviany 1991 ; Zanotti & Carbonell 1984). The compressibility 
could thus be treated perturbatively about an incompressible state, with A p / p  being the 
expansion parameter (Prud’homme, Chapman & Bowen 1986; Prins 1991). Even with 
small compressibility it was shown that important modifications arise in the laminar 
pressure and velocity profiles (Prud’homme et al. 1986; Prins 1991 ; Berg, Seldam & 
Gulik 1993). More recently, numerical studies have been initiated to analyse non- 
isothermal compressible flow and heat transfer in cylindrical packed beds (Foumeny & 
Ma 1994). Considerable research has been carried out on creeping flow, but most of 
the work has concentrated on incompressible flow (White 1991). 

The work described here assumes M 4 1 and A p / p  - A T / T  - A p l p  - 1. As an 
initial attempt to understand the flow properties of the LMCF regime we focus on the 
problem of steady-state laminar flow of an ideal gas in a channel. However, since most 
superconducting magnet applications are characterized by turbulent flow, we include 
such effects, but only in the simplified context of a turbulent friction factor. The goals 
are to (i) determine the basic flow and heat removal properties of the gas, (ii) develop 
an understanding of the corresponding friction factor and heat transfer coefficient and 
how they might be measured experimentally in the laminar regime, and (iii) develop 
insight into some of the effects of turbulence on the flow. A number of new and 
somewhat surprising results follow from the analysis and are summarized below. 

(i) A basic LMCF ordering is defined from which we derive the nonlinear, time- 
dependent LMCF model. 

(ii) Analytic solutions are obtained for the flow properties in the case ,u = const. and 
K = const. (here ,u is the viscosity and K is the thermal conductivity). 

(iii) The analytic solutions are generalized to the more realistic case ,u = ,u( T )  and 
K = K(T) .  In this situation there exist two bifurcated solutions, only one of which is 
stable. 

(iv) It is demonstrated that experimental measurements of the friction factor f and 
heat transfer coefficient h are coupled. For instance to determinef, not only are the flow 
rate and pressure drop required, but one must also measure the inlet and outlet 
temperatures and the applied heat flux. A similar consideration applies to h. 

(v) Somewhat surprisingly, for a given pressure drop Ap, steady-state solutions (and 
the corresponding concepts of a steady-state friction factor and heat transfer 
coefficient) exist only when the applied heat flux lies below a critical value : q < qc. For 
q > qc, the flow never reaches steady state. Instead, at some point in the channel, the 
flow reverses against the applied pressure gradient. Fluid then flows out of both the 
inlet and outlet quickly depleting the system of coolant. 

(vi) For the more realistic case ,u = ,u( T ) ,  K = K( T ) ,  it is shown that in conjunction 
with the condition q < qc, there is an additional requirement that the mass flow satisfy 
m > mc. Attempts to measurefand h at low flow rates again lead to flow reversal and 
depletion of the gas. 

(vii) The effects of turbulence are modelled by introducing a friction factor in place 
of the laminar viscosity. The qualitative nature of the flow remains unchanged 



Low Mach number compressibleflow in a channel 133 

although the value of qc is reduced relative to its laminar value as the Reynolds number 
is increased. The phenomena described above are thus not pathologies of laminar flow. 

The analysis leading to these conclusions is described in the main body of the text. 

2. Model 
The starting point for the analysis is the set of general mass, momentum, and energy 

conservation laws for an ideal, compressible, monatomic gas. The corresponding 
equations are given by (Bird, Stewart & Lightfoot 1960) 

p -+v.vv = - v p - v . 2 ,  (i; ) 

p = RpT. (4) 
For the gas under consideration C, = :R and Ca = R.  The stress tensor and heat flux 
have their usual forms : 

7 = -p[Vv+(VV)*]+~p(V.V)/ ,  

q = -KVT, 

where / is the identity tensor and ,u and K are assumed to be functions of T. 
Consider the regime of low Mach number compressible flow (LMCF), a situation 

that arises when the length of a channel L is sufficiently large with respect to its 
hydraulic diameter d. In this regime the frictional force due to viscosity dominates 
inertial effects, leading to a low Mach number flow even though the pressure gradient 
is finite. The practical conditions under which this occurs correspond to 

or equivalently 

where M = v /v ,  is the Mach 

V - -  p d 2  < u, 
PL 

umber and Re = pvd/,u is the Reynolds umber. Note 
that we are concerned with flow gradients occurring over the entire length of the 
channel L. A different scaling would be required for short-scale entrance problems. 

When ( 5 )  is satisfied the basic model can be easily recast in a dimensionless form 
containing only three dimensionless parameters : M 2 ,  (d /L ) ,  and the Prandtl number 
Pr = C , ~ / K  which is always on the order of unity for gases. Based on the above 
discussion one can now introduce a basic ordering scheme that defines low Mach 
number compressible flow : 
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Here Ap, AT, Ap are the changes inp, T , p  from inlet to outlet, and the subscripts z and 
I refer to the parallel and transverse flow directions respectively. For convenience E 

has been introduced as a formal ordering parameter. 
As a reference case, consider a small-scale hypothetical test experiment using helium 

as the gas. The relevant parameters are d = lop3 m, L = 10' m, p (inlet) = 1.4 kg mp3, 
T (inlet) = 100 K, Ap = 2 x lo5 N m-', A p / p  (inlet) = :, v, (inlet) = 590 m s-l, and 
,u (inlet) = 9.6 x kg m-l spl. It can easily be shown that these parameters satisfy 
the requirements of the LMCF ordering. 

The next step is to substitute the ordering scheme into the basic model. To obtain 
a closed set of equations we require the following variables to the order indicated: 

(7a, b) 

p = p o + p z +  ..., T =  T,+Tl+ ..., (7c, 4 
p = po+ ..., u = (v,,+ ...)+( uZ1+ ...) e,, 

where for any quantity Q, Q, - en Q,. Observe that we require only the first non- 
vanishing terms for p, u, and v, but require higher-order corrections for p and T. (The 
first-order correction p 1  vanishes trivially.) The reasons for this will become apparent 
as the analysis progresses. 

Consider first the mass equation. In the context of the LMCF expansion this 
equation remains unchanged as all terms are competitive. Continuing, in the 
perpendicular component of the momentum equation, the leading-order contribution 
is given by 

V,PO = 0 (8 a> 
or equivalently 

(8 b) 
To leading order the pressure is constant in the cross-section. The first higher-order 
non-vanishing contribution can be written as 

Po = PO(Z9 0. 

V I P Z  = ~ [ V ~ v , , + ~ v , ( V ~ v ) 1 - ~ V , v , , - V , ~ ~ [ ~ ( v * u ) t - V ,  aP U,,-(V,U, , )~] .  (9) 

This complicated equation is required to determine the transverse dependence of the 
pressure. 

For the parallel component of the momentum equation, only the leading-order 
contribution is necessary : 

@ = v , .  @ V ,  VZ1). (10) aZ 
From (9) and (10) we see that in the context of the LMCF ordering, inertia is negligible 
relative to viscous forces. 

The next relation of interest is the energy equation. To leading order this reduces to 

V,*(KV, To) = 0. (1 1) 

For channel problems the solution to (1 1) is To = To(z) and one must calculate to 
higher order to determine the transverse heat flux. In annular or slab problems with 
large transverse heat flow the entire solution can be obtained in leading order. In the 
application sections we consider the more interesting case To = To(z). For this class of 
problems, where the temperature is nearly constant in the cross-section, we require the 
first higher-order non-vanishing contribution, which can be written as 
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Observe that both compression and frictional heating are included in the energy 
equation. 

The final relation of interest is the equation of state which requires only the leading- 
order contribution. For convenience, we summarize the LMCF equations below : 

(13) 
- + v . p v  aP = 0, 
at 

P = RPT, (18) 

where for simplicity all subscripts have been suppressed except onp, and Tl .  The basic 
unknowns in the problem are p,p,  T, v,p, and T I .  All quantities are functions of 
(x, y ,  z,  t )  except p = p(z,  t ) .  Although there appear to be seven equations and eight 
unknowns, the fact that p depends only on (z ,  t )  allows the problem to be ultimately 
evaluated by means of an integrability condition on (17). 

The specific applications discussed in the paper are concerned with steady-state two- 
dimensional fully developed laminar flow in a straight circular channel. Under these 
conditions, the LMCF model reduces to 

v - p v  = 0, (19) 

p = RpT. (23) 

Here, v = v,e, + v, e,, and p ,  T,  TI and v are functions of ( r ,  2). The pressure p = p(z)  is 
determined by means of an integrability condition on (22). The equation for pz is not 
explicitly needed for the problems under consideration. Equations (1 9)-(23) describe 
low Mach number compressible flow and serve as the basis for the analysis that 
follows. 

3. Flow in a channel 
In this section the LMCF properties in a straight circular channel are investigated. 

The specific problem of interest assumes that a uniform (in z )  heat flux q is applied 
along the entire length of the channel. As previously stated, the channel is sufficiently 
long that entrance efforts can be neglected. The goals of the analysis are to calculate 
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the flow rate as a function of applied pressure gradient and the outlet temperature as 
a function of q and the inlet temperature. In contrast to incompressible flow it is shown 
that the evaluation of the flow rate ri? and exit temperature T,  are coupled, with m a 
function of q and T,  a function of Ap. Once the solutions are obtained, a short 
calculation is presented giving the LMCF friction factor and Nusselt number, which 
are then compared to the corresponding incompressible results. 

3.1 .  Analysis 
The analysis proceeds as follows. Since p is only a function of z ,  (20) can be 
immediately integrated with respect to r ,  leading to a Poiseuille-like profile for the 
parallel velocity 

Here, the prime denotes d/dz, b = d /2  is the radius of the channel, and the no-slip 
boundary condition v,(b, z )  = 0 has been applied. Note that p’ is not automatically a 
constant as it is for incompressible flow. 

Next, the expression for v, is substituted into the mass equation, (19), which is then 
formally integrated to obtain an expression for 0,. Eliminating p by means of the 
equation of state leads to 

v,(r, z )  = ~- b 2 T a  [ pp’ r L ( l - $ ) r d r ] .  
4rpaz 

To proceed further, we note that the solution to (21) satisfying the regularity 
condition at the origin is T = T(z) .  This leads to the following simplified expression 
for v - :  

v,(r,z) = -(-) b4T pp’ ’ (---:$). 1 r2 
4rp p T  2b2 

The normal velocity boundary condition corresponding to a solid wall is u,(b,z) = 0 
implying that G)’ = 0 

and that u,(Y, z )  = 0 everywhere. Equation (27) represents one relation between the 
unknowns p(z)  and T(z). A more complicated condition, for instance corresponding to 
porous flow through the boundary, can be treated in a straightforward manner, but for 
simplicity we consider only the solid-wall condition. 

The final piece of information to complete the solution results from the energy 
equation, (22). A short calculation yields an equation for T,(r, z ) :  

12 (rK F) aT1 - - - b2 { [ 3pp’T’ 7 + p  E)] (1 - $) +$$}. 
r ar 

Equation (28) is solved as follows. To begin, note that for a solution for T, to exist, 
the right-hand side of (28) must satisfy an integrability condition. This condition yields 
a second relation between p and T and is obtained by forming s: r dr and using the 
boundary condition d T ( b ,  z)/ar = d T , ( b ,  z) /ar  = q. (Here, q > 0 represents energy 
input.) The integrability condition is given by 
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3.2. The case p = const. 
Equations (27) and (29) can easily be solved for p and T for the case p = const. The 
result is 

where Ti is the inlet temperature, pi is the inlet pressure, p e  is the exit pressure and 

32pL2q 
Q E  

5b3@,2 - P 3  

is a dimensionless heat flux, normalized by the pressure drop along the channel. 

T(z) into the equation for T,, (28). This yields 
The mathematical solution is completed by substituting the expressions for p2{(z) and 

which has as its solution 

T - -  bq[(r2 r4 3) + P ( r 2  r4 l)] +T( - z). 
- K b2 4b4 4 Q b2 2b4 2 

Here P is a dimensionless function of z defined as 

2 L2p'2(z) 
P(z) = -22 - O(1). 

5 Pi -PL? 

(34) 

(35) 

Equation (34) has a homogeneous solution of the form F(z) which cannot be 
determined until next order in the expansion. However, its value is not required when 
calculating the heat flux and heat transfer coefficient. Finally in (34), note that 
K = K[T(z)] to lowest order. 

3.3. Discussion of the case p = const. 
The LMCF solutions are now complete and can be compared with the corresponding 
incompressible flow solutions in terms of profiles, flow rates, temperature differences, 
friction factors and Nusselt numbers. 

Consider first the profiles. Summarized below are the LMCF and incompressible 
flow profiles (including frictional heating) for p ,  T, and u :  

pressure profiles 

temperature profiles 
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velocity profiles 

In these expressions, denotes the incompressible solution, 

Q 16pL2q/b3Cp pTi(pc-pe), @ (Pc-Pe)/PCp Ts, 

and C p  is the specific heat at constant pressure. As an example the pressure and the 
velocity are plotted versus z / L  in figure 1 for p, /p ,  = 3 and various values of Q. There 
are several points to note. First, p is always greater than a, implying that p' is smaller 
as z+ 0 and larger as z -+ L. This follows because heat supplied near the midpoint of 
the channel (z  - L/2)  tends to escape towards each end. The pressure gradient 
resulting from the heat expansion adds to the applied pressure near the end ( z  - L) and 
subtracts from it near the entrance ( z  - 0). 

Secondly, observe that when Q + 1 ,  then p'(0) = 0 and v,(O) = 0. The implication is 
that for Q < 1 steady-state flow solutions exist with v,(z) > 0 for 0 < z < L. For Q > 1 
the flow reverses and there are no physical steady-state solutions (e.g. T becomes 
negative). Consequently, 

Q < l  ( 3 9 4  

or equivalently 

is required for steady-state LMCF; that is, the heat flux must be sufficiently small that 
the reverse pressure gradient near the inlet due to heating does not overcome the 
applied pressure gradient. For the proposed small-scale experiment, we find that 
qe = 16.3 W rn+ corresponding to a total heat input along the entire length of the 
channel of only 5 .1  W. 

Thirdly, the ordering Q - 1 implies that bq/KT, - P r W  < 1 .  Consequently, 
TJT 4 1 ,  thereby justifying the expansion technique used in the solution for T. 

Finally, to leading order the LMCF profiles reduce to the incompressible solution 
for the case (Pi-pe)/pi  < 1 and Q 4 1. In addition, by setting Q = 0 and treating 
(pi-p,)/pr as a small parameter we can expand the LMCF pressure and velocity 
profiles. These profiles reduce exactly to those given in Prud'homme et al. (1986) where 
from the outset the case Q = 0, (pc-pe) /pi  4 1 is treated. 

The next topic for discussion is the flow rate-pressure drop relation and the 
corresponding evaluation of the friction factor. The flow rate follows from the usual 
definition m = 27c jpv2: r dr. As expected, m is independent of z for both LMCF and 
incompressible flow. The values are given by 

The first terms on the right-hand side have different forms but are qualitatively similar 
in origin; a given pressure drop drives a flow inversely proportional to the viscous 
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FIGURE 1. (a) Helium pressure profile along the channel given by (36a). (b) Helium velocity 
profile along the channel given by (38a). 

friction force. The LMCF, however, has an additional flow-reducing contribution 
resulting from the reverse pressure gradient due to heat flow. When q = qe, the flow 
rate reduces to zero. 

The friction factor f can be found from the usual definition (Bird et al. 1960) 

where U denotes (2 /b2)  J Urdr. In general f can be a function of z. For both LMCF 
and incompressible flow, however, f is independent of z.  Interestingly, in a formal 
sense, the friction factors are the same for both flows, given by the well-known relation 

where Re = pjz d/p and d = 2b. In contrast, if one rewrites the friction factor in terms 
of quantities that can be measured experimentally, the expressions are quite different: 

f =f= 64/Re,  (42) 
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Nu 

Nu = 48/11 

- 

- 
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FIGURE 2. Nusselt number along the channel given by (460). 

Observe that for LMCF, one is required to measure the inlet temperature and input 
heat flux, in addition to the pressure drop and flow rate to experimentally determine 
the friction factor. 

The remaining topic of interest concerns the exit temperature and the corresponding 
Nusselt number. The exit temperatures follow immediately from (37) and are given by 

5b3(p,2 -p,2) - 32,~L’q 1 ’ 5b3(p,2 -p;)  + 32,~L’q 
T, x T(L) =Ti (44 4 

For a fixed pressure gradient the exit temperature in an incompressible fluid increases 
linearly with q. For an LMCF fluid, T, increases even faster with q and approaches 
infinity as q + qc. The reason is that as q increases, the flow slows down, allowing the 
fluid to spend more time getting heated as it moves along the channel. 

The Nusselt numbers are easily evaluated from the standard definition (Bird et al. 
1990) 

In general Nu is a function of z. A short calculation based on (34) yields 

.. 48 
NU = 

48 
11 + 6P/Q’ 1 1 + 6@/&’ 

NU = 

Although the numerical values for each case are comparable, the LMCF solution is 
interesting in that Nu = Nu(z) because of the z-dependence of P.  For the incompressible 
case p/Q = const. 4 1 .  This suggests that measurments of Nu or, equivalently the heat 
transfer coefficient h, from LMCF experiments cannot be made globally from the inlet 
and exit conditions. Instead, local measurements along the length of the channel are 
required. Nu is plotted versus z / L  in figure 2 for pJpe = 3 and various values of Q .  
Note that the value of Nu along the tube is substantially different from the 
corresponding incompressible limit Nu z 4.364. 
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As a final point, we emphasize that the concept of a steady-state friction factor and 
heat transfer coefficient only make sense for q < qc. For q > qc steady state is never 
achieved andfand h will in general be explicit functions of time until the flow reverses 
and the system depletes itself of gas. 

3.4. The case ,u =l= const. 
When ,u is a function of T, the solutions of the LMCF model exhibit many similar 
qualitative features to the ,u = const. case. However, the existence of a maximum q 
defining the boundary of steady-state operation is somewhat more subtle. To show 
this, we introduce a simple model for ,u and K as follows: 

The transport coefficients are normalized by their inlet values and their variation with 
T is characterized by the parameter v. For real gasses v - 1 (for helium used in our 
proposed test experiment v - 0.7). 

The first step in obtaining a solution is to observe from (27) that 

where c is an integration constant, unknown at this point. The next step is to substitute 
into (29) to obtain an equation for T. A short calculation gives 

dT  32 q 
dz 5 cb3’ 

- - - -_ 

The solution can be written as 

(49) 

where h = (Te- Ti)/Ti = 32qL/5cb3Ti is a more physical, but still unknown, constant, 
replacing c. Observe that T satisfies the inlet condition T(0) = Ti and is linear in z even 
when ,u = ,u(T). 

Equation (50) is substituted back into (48). The resulting relation is easily integrated 
yielding the following relation for p(z)  : 

Observe that the integration constant has been chosen so that p satisfies the inlet 
condition p(0)  =p i .  The unknown constant A, related to the exit temperature, is 
determined by requiring p ( L )  = p,. This gives the desired relation 

where, as before Q = 32pi L2q/5b3(p: -p,2). The velocity profile is again given by (24) 
with ,u = p ( T ) .  

Equation (52) is plotted in figure 3. Shown here are curves of exit temperature 
difference us. input heating power (i.e. h us. Q) for various v. Note that for v = 0, 
corresponding to p = const., Te- Ti is a monotonically increasing function of q as long 
as q < qc. The condition q = qe (Q = 1) forces T, - Ti + co and u,(O) + 0. 

However, for v $: 0 the exit temperature is a double-valued function of q. Further 
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Q 

t (s) 
FIGURE 4. Time evolution of the inlet helium velocity for two different values of Q using the 

parameters of the proposed test experiment. 

analysis of the time-dependent one-dimensional model resolves the difficulties as 
follows. The extremum point where dQ/dA = 0 corresponds to a point of marginal 
stability. The lower branch of the curve is stable for Q < Q,. The upper branch is 
unstable, perhaps not surprisingly, since in this regime an increase in heating power 
leads to a reduction in exit temperature. 

At the point Q = Q,, h = A, all the solutions are well behaved - there is no 
transition to flow reversal nor is the exit temperature approaching infinity. To 
determine the behaviour for Q > Q, we have solved the nonlinear time-dependent 
equations numerically assuming that the source Q is applied at t = 0 and using the 
parameters of the proposed test experiment. The inlet velocity ui = VZ ( z  = 0) is shown 
in figure 4 for two cases, one with Q < Q ,  and the other for Q > Q,. Observe that 
when Q < Q,, the inlet velocity evolves to a steady-state value. On the other hand, for 
Q > Q,, the system never reaches a steady state and just continues to evolve until the 
flow reverses. Ultimately all the gas is depleted from the system. 
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It is also worth pointing out that the value of Q, is substantially reduced as 
v increases. For instance, when v = 1 ,  then Q, = d3-% = 0.23 which is much 
smaller than the value Q, = 1 for Y = 0. Also, for v = 1 the exit temperature 
T, = (1 + 2/3)Ti = 2.73Ti, representing a finite but not enormous temperature rise. 

The mass flow produced by a given pressure drop is obtained by a simple calculation 
which shows that 

with A(Q)  given by (52). This relation is qualitatively similar to the p = const. case, 
(40a). The interesting feature is that the slowest allowable mass flow rate occurs when 
Q = Q ,  and A = A,. This follows because the ratio Q / A  is a decreasing function of Q 
on the stable portion of the Q us. h curve. Unlike the ,u = const. case where m + 0 when 
Q = Q,, in this case m achieves a finite minimum value at this point. Thus, for v = 1, 
steady-state solutions exist only for 

The last point of interest is to obtain the friction factor and the Nusselt number. In 
this case we find the friction factor (given by (42)) is no longer a constant along the 
channel, since Re = Re(z). The first-order temperature Tl(r, z )  and the Nusselt number 
can again be calculated from (33) and (45) and are given by 

48 
1 1  + 6(Ti/T)’ P/Q’ 

NU = 

where P is given by (35). 

3.5. A simple model for  turbulentjow 
Some of the effects of turbulent flow can be incorporated into the one-dimensional 
model by the simple procedure of introducing a turbulent friction factor. Consistent 
with the LMCF expansion we easily obtain a set of one-dimensional equations for 
P ( 4 ,  T(z), P ( 4 ,  v,(4 : 

Here, 

m 
nb2 

pD, = ~ = const., (57) 

There is as yet no detailed experimental determination off in the LMCF regime with 
non-zero heat input or for that matter even a determination that the dominant effect 
of turbulence can be modelled by merely modifying the friction factor. Even so, to 
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FIGURE 5. Curves of A versus Q given by (64). 

obtain some preliminary insight we shall, as is common practice in porous-medium 
flow, use such a friction factor and for want of anything better set f = 64/Re+f, .  
Here,f, = const. E 0.07 is the friction factor in the turbulent regime, corresponding 
to a rough tube. 

The solution is obtained as follows. Using the fact that p ~ ,  = const. allows us to 
immediately integrate (59), yielding an expression for T(z) given by 

T(z) = Ti(  1 + A t ) ,  

The temperature profile is again linear in z ,  irrespective of the value off, although 

The expression for T is substituted into the momentum equation which can also be 
h = hcf). 

easily integrated leading to an expression for p that can be written as 

As before the relation between h and Q (i.e. exit temperature and heat flux) is obtained 
by setting p(L) = p e .  In normalized form, this relationship is given by 

Q-h2 = 0, 
[( 1 + A)Z+, - 11 

'&(I +A/2)Q2+ 
32 (1 + v /2 )  

where Q has been defined in conjunction with (52) and R, is a dimensionless parameter 
related to Reynolds number, defined by 

For the proposed test experiment R, x 1300. 
The goal now is to examine (64) to determine how the modification of the friction 

factor alters the laminar theory conclusions regarding the existence of a maximum q for 
steady-state solutions. This basic question is answered in figure 5 where we have 
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plotted curves of h vs. Q for various R,. Observe that the qualitative nature of the 
curves remains unchanged as the turbulence (i.e. R,) increases. As R, + 0 the laminar 
result is recovered. For large R, the maximum normalized heat flux decreases with R, 
while the exit temperature increases. 

The basic conclusion is that in the simple turbulent model discussed here important 
quantitative changes in LMCF properties occur, but the qualitative behaviour remains 
the same. Specifically, for steady-state flow the applied heat flux must lie below a 
critical value, indicating that the effect is not an obvious pathology of the laminar flow 
assumptions. 

4. Conclusions 
We have investigated the basic properties of a relatively uncommon regime of fluid 

dynamics, low Mach number compressible flow. This regime, which is of importance 
in the cooling of large-scale superconducting magnets, is characterized by an enormous 
aspect ratio L / d  - lo6. The consequence is that friction dominates inertia, leading to 
highly subsonic flows, even though finite pressure, temperature, and density gradients 
are required because of the exceptionally long lengths involved. Many features of the 
flow are qualitatively similar, although quantitatively different from incompressible 
flows. Perhaps the most surprising result is that steady-state solutions exist only below 
a critical value of heat input. Above this value the compressibility leads to a flow 
reversal against the applied pressure gradient causing the gas to flow out of both the 
inlet and outlet, thereby depleting the coolant. The existence of a maximum heat input 
and a corresponding minimum flow rate are found under both laminar and simple 
turbulent conditions. Parameters have been given for a simple small-scale experiment, 
that could test several of the conclusions of the theory and we intend to do so in the 
future. 
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